Nonholonomic Hamilton–jacobi Theory via Chaplygin Hamiltonization
نویسنده
چکیده
We develop Hamilton–Jacobi theory for Chaplygin systems, a certain class of nonholonomic mechanical systems with symmetries, using a technique called Hamiltonization, which transforms nonholonomic systems into Hamiltonian systems. We give a geometric account of the Hamiltonization, identify necessary and sufficient conditions for Hamiltonization, and apply the conventional Hamilton–Jacobi theory to the Hamiltonized systems. We show, under a certain sufficient condition for Hamiltonization, that the solutions to the Hamilton–Jacobi equation associated with the Hamiltonized system also solve the nonholonomic Hamilton–Jacobi equation associated with the original Chaplygin system. The results are illustrated through several examples.
منابع مشابه
Nonholonomic Hamilton-Jacobi Theory via Chaplygin Hamiltonization
This document is a brief overview of the Hamilton-Jacobi theory of Chaplygin systems based on [1]. In this paper, after reducing Chaplygin systems, Ohsawa et al. use a technique that they call Chaplygin Hamiltonization to turn the reduced Chaplygin systems into Hamiltonian systems. This method was first introduced in a paper by Chaplygin in 1911 where he reduced some nonholonomic systems by the...
متن کاملHamilton–jacobi Theory for Degenerate Lagrangian Systems with Holonomic and Nonholonomic Constraints
We extend Hamilton–Jacobi theory to Lagrange–Dirac (or implicit Lagrangian) systems, a generalized formulation of Lagrangian mechanics that can incorporate degenerate Lagrangians as well as holonomic and nonholonomic constraints. We refer to the generalized Hamilton–Jacobi equation as the Dirac–Hamilton–Jacobi equation. For non-degenerate Lagrangian systems with nonholonomic constraints, the th...
متن کاملA Generalization of Chaplygin’s Reducibility Theorem
In this paper we study Chaplygin’s Reducibility Theorem and extend its applicability to nonholonomic systems with symmetry described by the Hamilton-Poincaré-d’Alembert equations in arbitrary degrees of freedom. As special cases we extract the extension of the Theorem to nonholonomic Chaplygin systems with nonabelian symmetry groups as well as Euler-Poincaré-Suslov systems in arbitrary degrees ...
متن کاملNonholonomic Hamilton–jacobi Equation and Integrability
We discuss an extension of the Hamilton–Jacobi theory to nonholonomic mechanics with a particular interest in its application to exactly integrating the equations of motion. We give an intrinsic proof of a nonholonomic analogue of the Hamilton–Jacobi theorem. Our intrinsic proof clarifies the difference from the conventional Hamilton–Jacobi theory for unconstrained systems. The proof also helps...
متن کاملLinear Almost Poisson Structures and Hamilton-jacobi Theory. Applications to Nonholonomic Mechanics
In this paper, we study the underlying geometry in the classical Hamilton-Jacobi theory. The proposed formalism is also valid for nonholonomic systems. We first introduce the essential geometric ingredients: a vector bundle, a linear almost Poisson structure and a Hamiltonian function, both on the dual bundle (a Hamiltonian system). From them, it is possible to formulate the Hamilton-Jacobi the...
متن کامل